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ABSTRACT

We prove that knots with braid index three in the 3-sphere satisfy the Property P

conjecture.

1. Introduction

Let K be a knot in the 3-sphere S3 and M = MK the complement of an open regular

neighborhood of K in S3. As usual, the set of slopes on the torus ∂M (i.e. the set

of isotopy classes of unoriented essential simple loops on ∂M) is parameterized by

{m/n ; m, n ∈ Z, n > 0, (m, n) = 1} ∪ {1/0},

so that 1/0 is the meridian slope of K and 0/1 is the longitude slope of K. The

manifold obtained by Dehn surgery on S3 along the knot K (equivalently, Dehn fill-

ing on M along the torus ∂M) with slope m/n, is denoted by K(m/n) or M(m/n).

Of course K(1/0) = S3, and thus the surgery with the slope 1/0 is called the triv-

ial surgery. The celebrated Property P conjecture, introduced by Bing and Matin

in 1971 [2], states that every nontrivial knot K in S3 has Property P, i.e. every

nontrivial surgery on S3 along K produces a non-simply connected manifold. For

convenience we say that a class of knots in S3 have Property P if every nontrivial

knot in this class has Property P. The following classes of knots were known to have

Property P: torus knots [12], symmetric knots [5] (the part for strongly invertible

knots was proved in [4]), satellite knots [8], arborescent knots [17], alternating knots

[6], and small knots with no non-integral boundary slopes [7]. For a simple homo-

logical reason, to prove the conjecture for a knot K one only needs to consider the

surgeries of K with slopes 1/n, n 6= 0. A remarkable progress on the conjecture

was made in [5]; it was proved there that for a nontrivial knot, only one of K(1) or

K(−1) could possibly be a simply connected manifold. Another remarkable result
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was given in [11], which told us that if the Property P conjecture is false, then the

Poincare conjecture is false. For some earlier progresses on the conjecture, see [13,

Problem 1.15] for a summary. In this paper we prove

Theorem 1. Knots in S3 with braid index three satisfy the Property P conjecture.

The main tools we shall use are the Casson invariant and essential laminations.

We refer to [1] for the definition and basic properties of the Casson invariant and

[10] for the definition and basic properties of an essential lamination. In Sec. 2

we give an outline of the proof of Theorem 1. Actually the proof of Theorem 1 is

reduced there to that of two propositions, Proposition 3 and Proposition 4. These

two propositions will then be proven in Secs. 3 and 4 respectively.

2. Proof of Theorem 1

Recall that the 3-braid group, B3, has the following well known Artin presentation:

B3 =< σ1, σ2 | σ1σ2σ1 = σ2σ1σ2 >

where σ1 and σ2 are elementary 3-braids as shown in Fig. 1.

Fig. 1. σ1 (the left figure) and σ2 (the right figure).

If we let a1 = σ1, a2 = σ2, a3 = σ−1
1 σ2σ1 = σ2σ1σ

−1
2 , then B3 also has the

following presentation in generators a1, a2 and a3 (see [18]):

B3 =< a1, a2, a3 | a2a1 = a3a2 = a1a3 > .

In this paper we shall always express a 3-braid as a word w(a1, a2, a3) in letters

a1, a2, a3. Such a word is called positive if the power of every letter in the word

is positive. A positive word w = aτ1
· · ·aτk

is said to be in non-decreasing order

(ND-order) if the array of its subscripts (τ1, . . . , τk) satisfies

τj+1 = τj or τj+1 = τj + 1 (mod 3 if τj + 1 = 4) for j = 1, . . . , k − 1.

One can define negative word and non-increasing order (NI-order) similarly. Let

P be the set of positive words in ND-order, let N be the set of negative words

in NI-order, and let α = a2a1. It is proven in [18] that for any 3-braid, there is a

representative in its conjugacy class that is a shortest word in a1, a2, a3 and is of

the form

(i) a product of αk and a word (maybe empty) in P for some non-negative integer

k; or
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(ii) a product of αk and a word (maybe empty) in N for some non-positive integer

k; or

(iii) a product of a word in P and a word in N ,

where the meaning of the shortest is that the length, i.e. the number of letters of

the representative is minimal among all representatives in the conjugacy class of

the braid. Such representative of a 3-braid is said to be in normal form. We shall

only need to show that if K is a nontrivial knot in S3 which is the closure of a

3-braid in normal form (i) or (ii) or (iii), then it has Property P.

Recall that a word w(a1, a2, a3) is called freely reduced if no adjacent letters are

inverse to each other, and is called cyclically reduced if it is freely reduced and the

first letter and the last letter of the word are not inverse to each other. Given a

word w(a1, a2, a3), one can combine all adjacent letters of the same subscript into

a single power of the letter, called a syllabus of the word in that subscript. A word

w is called syllabus reduced if it is expressed as a word in terms of syllabuses as

w = am1
τ1

am2
τ2

· · · amk
τk

such that aτj
6= aτj+1

for j = 1, . . . , k−1. A word is called cyclically syllabus reduced

if it is syllabus reduced and its first and last syllabuses are in different subscripts.

Let P ∗ denote the set of all positive words in a1, a2, a3 such that between any

two syllabuses in a3 both a1 and a2 occur. Obviously any 3-braid of norm form (i)

is contained in P ∗. Let β be a 3-braid in P ∗. Suppose that ak
3 is a syllabus in β

which is proceeded immediately by a1. Then one can eliminate the syllabus ak
3 with

the equality a1a
k
3 = ak

2a1 to get an isotopic braid which is still in P ∗ but with one

less number of syllabuses in a3. Similarly if a syllabus ak
3 is followed immediately by

a2, then one can eliminate the syllabus ak
3 with the equality ak

3a2 = a2a
k
1 to get an

isotopic braid which is still in P ∗ but with one less number of syllabuses in a3. We

shall call this process index-3 reduction. So for any given β ∈ P ∗, we can find, after a

finitely many times of index-3 reduction, an equivalent braid representative β ′ in P ∗

for β such that every syllabus in a3 occurring in β′ can only possibly be proceeded

immediately by a2 and likewise can only possibly be followed immediately by a1.

We call a word β in P ∗ index-3 reduced if every syllabus in a3 occurring in β is

neither proceeded immediately by a1 nor followed immediately by a2.

Let P a denote the set of 3-braids of the form β = a−q
i δ, where q = 0 or 1 and

δ ∈ P ∗ is a non-empty word, such that δ is index-3 reduced and β is cyclically

syllabus reduced. Obviously P is contained in P a.

Proposition 2. Suppose that K is a knot in S3 which is the closure of a 3-braid

β = a−q
i δ in P a such that δ contains at least four syllabuses but β is not one of the

words in the set

E = {a−1
1 a2a

2
3a1a2, a

−1
1 a2

3a1a2a3, a
−1
1 a3a1a

2
2a3, a

−1
1 a2a3a1a

2
2,

a−1
2 a3a1a2a

2
3, a

−1
2 a3a

2
1a2a3, a

−1
2 a1a2a

2
3a1, a

−1
2 a2

1a2a3a1,

a−1
3 a1a2a3a

2
1, a

−1
3 a1a

2
2a3a1, a

−1
3 a2a3a

2
1a2, a

−1
3 a2

2a3a1a2} .
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Then K has positive Casson invariant and thus has Property P.

Later on we shall refer the set E given in Proposition 2 as the excluded set.

Proposition 3. Suppose that K is a knot in S3 which is the closure of a 3-braid

β = δη which is in normal form (iii), i.e. δ ∈ P and η ∈ N . Suppose that either

1(1) each of δ and η has a syllabus of power larger than one, or

(2) each of δ and η contains at least two syllabuses, or

(3) one of δ and η contains at least four syllabuses and the other has length at least

two.

Then each of K(1) and K(−1) is a manifold which contains an essential lamination.

If a closed 3-manifold has an essential lamination, then its universal cover is R
3

[10] and thus in particular the manifold cannot be simply connected. Hence any

knot as given in Proposition 3 has Property P by [5].

Given Propositions 2 and 3, we can finish the proof of Theorem 1 as follows.

For a braid β, we use β̂ to denote the closure of β. Let K ⊂ S3 be a nontrivial knot

with index 3. Let β be a 3-braid in normal form such that β̂ = K.

isotopy

i crossings

j crossings

i crossings

j+1 crossings

m crossings

m crossings

Fig. 2. The closure of ai
1
a

j
2
am
3

is a Montesinos link.

First we consider the case that β is in normal form (i), i.e. β = αkδ with δ ∈ P

and k ≥ 0. If β contains at least four syllabuses and belongs to P a, then K = β̂ has

positive Casson invariant by Proposition 2. So the knot K has Property P in this

case. If β has less than four syllabuses, then up to conjugation in B3, β = a2a1a
i
3 or

β = ai
1a

j
2a

m
3 for i, j, m ≥ 0. It is easy to see that in this case β̂ is an arborescent knot

and thus by [17], K = β̂ has Property P. For instance if β = ai
1a

j
2a

m
3 , then β̂ is as

shown in Fig. 2 which shows in fact that β̂ is a Montesinos knot. So we may assume
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that β has at least four syllabuses but is not in P a. This implies that in β = αkδ,

we have k > 0 and δ starts with a syllabus in a3. Performing index-3 reduction on

β once, we get an equivalent 3-braid β′ ∈ P ∗ which is index-3 reduced, i.e. β′ ∈ P a.

If β′ has less than four syllabuses, then again K = β̂ = β̂′ is an arborescent knot

and thus has Property P. If β′ contains at least four syllabuses, we may apply

Proposition 2 to get Property P for the knot.

If β is of normal form (ii), then the mirror image of β is a braid of normal form

(i) and thus the knot K = β̂ has Property P.

isotopy

i crossings

j crossings

i crossings

j+1 crosssings

m crossings

m crossings

Fig. 3. The closure of a
−1

3
ai
2
a

j
3
am
1

is an arborescent link.

Suppose finally that β = δη is a braid of normal form (iii) (recall that δ ∈ P

and η ∈ N). By Proposition 3, we may assume that each of the conditions (1)-(3) in

Proposition 3 does not hold for β = δη. Then β is a word of the form δa−1
i or aiη, or

β = δa−k
i where k > 1 and δ contains at most three syllabuses each having power 1,

or β = ak
1η where k > 1 and η contains at most three syllabuses each having power

−1. If β contains at most four syllabuses, then K = β̂ is an arborescent knot and

thus has Property P. (Figure 3 shows this for the case that β = a−1
3 ai

2a
j
3a

m
1 . Other

cases can be treated similarly). So we may only consider the cases when β = δa−1
i

or β = aiη, each containing at least five syllabuses. If β = δa−1
i , then β is conjugate

to β′ = a−1
i δ which is in P a. Hence if β′ does not belong to the excluded set

E = {a−1
1 a2a

2
3a1a2, a

−1
1 a2

3a1a2a3, a
−1
1 a3a1a

2
2a3, a

−1
1 a2a3a1a

2
2,

a−1
2 a3a1a2a

2
3, a

−1
2 a3a

2
1a2a3, a

−1
2 a1a2a

2
3a1, a

−1
2 a2

1a2a3a1,

a−1
3 a1a2a3a

2
1, a

−1
3 a1a

2
2a3a1, a

−1
3 a2a3a

2
1a2, a

−1
3 a2

2a3a1a2} ,

then K = β̂′ has positive Casson invariant by Proposition 2 and thus has Property

P. If β′ is in the excluded set E, then K = β̂′ is an arborescent knot and thus has



June 20, 2003 14:30 WSPC/134-JKTR 00245

432 W. Menasco & X. Zhang

isotopy

Fig. 4. The closure of the braid a
−1

1
a2
3a1a2a3 is a Montesinos knot.

Property P [17]. (Figure 4 illustrates this for the case β = a−1
1 a2

3a1a2a3. Other cases

can be checked similarly). Finally, if β = aiη, then its mirror image is a braid in

P a, which is a case we have just discussed. This completes the proof of Theorem 1.

Propositions 2 and 3 will be proved in subsequent two sections which constitutes

the rest of the paper.

3. Proof of Proposition 2

We retain all definitions and notations established earlier. For a 3-braid β, we use

nβ to denote the number of syllabuses in a3 occurring in β and use sβ to denote

the number of syllabuses of β. Obviously if β′ is the braid obtained from β ∈ P ∗

after some non-trivial index-3 reduction, then β̂′ = β̂ but nβ′ < nβ. For a syllabus

ak
3 = a−1

1 ak
2a1, we shall always assume its plane projection corresponds naturally

to a−1
1 ak

2a1. Hence, every 3-braid in letters a1, a2, a3 has its canonical plane projec-

tion; namely in the projection plane we place vertically (from top to bottom) and

successively the projections of letters occurring in the braid, corresponding to their

natural order from left to right. Whenever we need consider a plane projection of a

3-braid, the canonical one is always assumed unless specifically indicated otherwise.

Fig. 5. K+ (the left figure), K− (the middle figure) and L0 (the right figure).

The basic tool we are going to use to prove the proposition is the following

crossing change formula (∗) of the Casson invariant. If K+, K− are oriented knots

and L0 an oriented link with two components in S3 such that they have identical

plane projection except at one crossing they differ as shown in Fig. 5, then the
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Casson invariants CK+
and CK

−
of K+ and K− satisfy the following relation:

CK+
− CK

−
= lk(L0) , (∗)

where lk(L0) is the linking number of L0. This formula can be found on page 141

of [1] (note that there was a print error there, K+ and K− in Figs. 36 and 37 of [1]

should be exchanged). The idea of proof of the proposition is repeatedly applying

the formula (∗) to a 3-braid of the type as given in the proposition to reduce the

complexity of the braid and inductively prove the positivity of its Casson invariant.

To do so, we first need to estimate the linking number of a two-component link

which is the closure of a 3-braid of relevant type. Given an oriented link L of two

components L1 and L2, we shall calculate the linking number of L as follows. Take

a plane projection of L. A crossing of L as shown on the left of Fig. 5 has positive

sign 1 and the crossing in the middle of the figure has negative sign −1. Let p be the

number of positive crossings between of L1 and L2 and q the number of negative

crossings between L1 and L2. The linking number of L is equal to (p−q)/2. In other

words, each positive (respectively negative) crossing between L1 and L2 contributes

1/2 (respectively −1/2) to the linking number of L, and any crossing between L1

and L1 or between L2 and L2 contributes 0 to the linking number of L.

For a 3-braid β, we shall always orient each component of β̂ in such a way that

the induced orientation on each strand of β in its canonical projection is pointing

downward in the projection plane. Suppose that β̂ is a link of two components. If

β′ is a portion of β, we use l(β′) to denote the total contribution to the linking

number of β̂ coming from all the crossings of β′, which maybe a half integer. In

particular l(β) = lk(β̂). Also if we decompose β into portions β = β1β2 · · ·βk, then

lk(β̂) = l(β1) + l(β2) + · · · + l(βk).

Given the canonical plane projection of a 3-braid η, we shall always call the

strand of η which starts at the top left corner the strand 1 of η, call the strand

which starts at the top middle place the strand 2 of η, and call the strand which

starts at the top right corner the strand 3 of η.

Lemma 4. Let L = L1∪L2 be a link of two components in S3 which is the closure

of a braid β = a−q
i δ, where q = 0 or 1, and δ is a positive word in a1, a2, a3. Then

the linking number lk(L) of L is non-positive.

Proof. Note that l(ai) ≤ 0 for i = 1, 2, 3, and l(a−1
i ) ≤ 1/2 for i = 1, 2. Hence if in

β = a−q
i δ, q = 0 or q = 1 but i = 1 or 2, then lk(L) = l(β) = l(a−q

i ) + l(δ) ≤ 1/2.

But lk(L) is an integer, so lk(L) ≤ 0. So we may assume that β = a−1
3 δ and

also assume that l(a−1
3 ) = 1. So in turn we may assume that the strand 1 of a−1

3

belongs to L1 and both strand 2 and 3 of a−1
3 belong to L2. One can then easily

check that for any positive word δ in a1, a2, a3, that one must have l(δ) < 0, in

order to have a consistent link component assignment to the strands of β (one can

see this by just looking at the first one or two possible syllabuses of δ). Hence

lk(L) = l(β) ≥ 0.
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We now prove Proposition 2. Let β = a−q
i δ be a 3-braid in P a as given in the

proposition, whose closure is the given knot K. Recall that sδ ≥ 4. Let lδ denote the

total length of δ. The stratege of the proof is to use induction on the total length lδ

of a knot from the set all braids β = a−1δ in P a with sδ ≥ 4, applying the crossing

change formula for Casson invariant.

By hand calculation case by case, one can check that Proposition 2 holds for

all braids β = a−q
i δ ∈ P a with sδ ≥ 4 and lδ ≥ 5. So we may assume that a given

β = a−1
i δ ∈ P a has sδ ≥ 4 and lδ ≥ 6.

If some syllabus in a3 occurring in δ has power k > 2, we apply the crossing

change formula (∗) for Casson invariant to K = β̂ at the second crossing of the

syllabus. The link L (of two components) obtained by smoothing the crossing is the

closure of a braid of the type as described in Lemma 4 and thus has non-positive

linking number. So we get a new braid β′ = a−q
i δ′ which is identical with β except

with two less in power at the syllabus in a3 and the Casson invariant of β̂′ is less

than or equal to that of β̂. Obviously β′ is still in P a. So if lδ ≥ 6, we may apply

induction. If lδ′ < 6 we may check directly that the original braid b̂ has positive

Casson invariant. So we may assume that every syllabus in a3 has power at most

two. Similarly we may assume that the power of a syllabus in a2 or in a1 is one or

two.

Claim D1. If a2
3 is a syllabus of δ, then the Proposition holds.

Proof. Consider the first such syllabus occurring in δ. Applying the formula (∗) to

β̂ at the second crossing of the syllabus a2
3, we get a new braid β′ = a−q

i δ′, where

δ′ is the braid obtained from δ by deleting the syllabus a2
3, such that δ′ ∈ P ∗,

nδ′ = nδ − 1, and Cβ̂ ≥ Cβ̂
′ (by Lemma 4). If β′ is still in P a and δ′ contains at

least four syllabuses but β′ is not a word in the excluded set E, then we may use

induction.

Suppose that β′ ∈ E. Since the syllabus we are considering is the first such

occurring in β and since δ is index-3 reduced, β can only be the word a−1
2 a2

3a1a2a
2
3a1

or a−1
2 a2

3a
2
1a2a3a1 or a−1

2 a2
3a1a2a3a

2
1 or a−1

1 a2a3a1a
2
2a

2
3. In such a case one can verify

directly that Cβ̂ is positive.

Hence, we may assume that either β′ is still in P a with δ′ containing exactly

three syllabuses, or β′ is no longer in P a. In the former case, β is a word in the set










aj
1a

k
2a2

3a
m
1 , aj

2a
k
1a

m
2 a2

3, aj
2a

2
3a

k
1am

2 , a2
3a

k
1aj

2a
m
3 , a2

3a
k
1aj

2a
m
1 ,

a3a
k
1am

2 a2
3, a−1

1 aj
2a

k
1a

m
2 a2

3, a−1
1 aj

2a
2
3a

k
1am

2 , a−1
1 a3a

k
1am

2 a2
3, a−1

2 aj
1a

k
2a2

3a
m
1 ,

a−1
2 a2

3a
j
1a

k
2am

3 , a−1
2 a2

3a
k
1a

j
2a

m
1 , a−1

3 aj
1a

k
2a2

3a
m
1 , a−1

3 aj
2a

2
3a

k
1am

2











for some j, k, m ∈ {1, 2}. When β is one of words in this set but is not in the excluded

set E, one can verify directly using the formula (∗) that β̂ has positive Casson

invariant. For instance, when β = a−1
1 aj

2a
k
1am

2 a2
3, it is conjugate to aj

2a
k
1am

2 a2
3a

−1
1 =

aj
2a

k
1am

2 a−1
1 a2

2 which in turn is conjugate to a−1
1 aj+2

2 ak
1am

2 . So we need to show that

the Casson invariant of the closure of the braid η = a−1
1 aj+2

2 ak
1am

2 is positive. We
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have eight possible cases for η corresponding to various possible values of j, k and m.

But only in case j = k = m = 1 or case j = 1, k = m = 2 or case j = k = 2, m = 1,

the closure of the involved braid is a knot, and in such a case one can verify directly

using formula (∗) that β̂ = η̂ has positive Casson invariant. In a similar way one

can verify the proposition for each of the other words in the above set. (We did the

checking!)

We now consider the latter case when β′ is not in P a. It follows that the syllabus

a2
3 is either the first or the last syllabus of δ and q = 1. We consider the case when

the syllabus a2
3 is the first syllabus of δ. The case when the syllabus a2

3 is the last

syllabus of δ can be treated similarly. It follows that β = a−1
1 a2

3a
j
1a

k
2 · · ·, for some

j, k ∈ {1, 2}, and β does not end with a1. If j = 2, then β′ = a−1
1 a2

1a
k
2 · · · which is

isotopic to β′′ = a1a
k
2 · · · which is in P a. So if β′′ contains at least four syllabuses,

we may use the induction or check Cβ̂ directly. We may then assume that β′′ has

less than four syllabuses. It follows that β′′ = a1a
k
2am

3 which is a knot only when

k = 2, m = 1 or k = 1, m = 2 and in these two cases Cβ̂ ≥ Cβ̂
′′ > 0. So we may

assume that j = 1. In this case β′ is isotopic to β′′ = ak
2 · · · which is in P a. Hence if

β′′ contains at least four syllabuses, we may use the induction. If β ′′ has less than

four syllabuses, then we must either have β = a−1
1 a2

3a1a
k
2a

n
1am

2 or β = a−1
1 a2

3a1a
m
2 aj

3.

In the former case, β′′ has positive Casson invariant (a nontrivial positive knot). In

the latter case, only when m = 1, j = 1, β̂ is a knot. But this braid is in the set E.

The proof of Claim D1 is now complete.

By Claim D1, we may now assume that every syllabus in a3 occurring in δ has

power equal to one.

Claim D2. We may assume that every syllabus in a1 occurring in δ has power

equal to one.

Proof. Suppose that δ contains syllabuses in a1 of power two. Consider the first

such syllabus occurring in δ. Applying the formula (∗) to β̂ at the first crossing of

the syllabus a2
1, we get a new braid β′ = a−q

i δ′ such that the Casson invariant of

β̂′ is less than or equal to that of β̂ by Lemma 4. Obviously δ′ is still a positive

word in a1, a2, a3 but may not be in P ∗ or P a. We have several possibilities for δ

around the given syllabus a2
1: δ = · · ·aj

2a
2
1a

k
2 · · · or δ = · · · a3a

2
1a

k
2 · · · or δ = a2

1a
k
2 · · ·

or δ = · · ·a2
1, for some j, k ∈ {1, 2}.

Case (D2.1). δ = · · · aj
2a

2
1a

k
2 · · · .

Then δ′ = · · · aj+k
2 · · · and β′ = a−q

i δ′ is still in P a. Also if j + k > 2, we may

apply the formula (∗) one more time to bring it down to one or two. Let β ′′ = a−q
i δ′′

be the resulting braid. Then if δ′′ contains at least four syllabuses, we may use the

induction or check Cβ̂ directly. If β′′ is in E, then one can verify directly that the

original braid β has positive Casson invariant. Note that sδ′ = sδ −2. Suppose that

sδ′ < 4. Then sδ is four or five and β = a−q
i aj

2a
2
1a

k
2a3 or β = a−q

i a1a
j
2a

2
1a

k
2a3 or
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β = a−q
i a3a1a

j
2a

2
1a

k
2 . Easy to check that when q = 0, any knot from these cases has

positive Casson invariant. So assume that q = 1 in these cases.

If β = a−1
i aj

2a
2
1a

k
2a3, then i = 1 since β is cyclically reduced. So β =

a−1
1 aj

2a
2
1a

k
2a3. To be a knot, we have k = j = 1 or k = j = 2. In each of the

two cases, one can verify directly that the Casson invariant of the knot is positive.

If β = a−q
i a1a

j
2a

2
1a

k
2a3, then i = 2. That is β = a−1

2 a1a
j
2a

2
1a

k
2a3. One can also

directly verify that Cβ̂ > 0 (for those values of k, j ∈ {1, 2} which make β̂ a knot).

The case that β = a−q
i a3a1a

j
2a

2
1a

k
2 can be treated similarly.

Case (D2.2). δ = · · · a3a
2
1a

k
2 · · · .

Then δ′ = · · · a3a
k
2 · · · = · · · a2a1a

k−1
2 · · · .

Case (D2.2.1.) k = 2.

If δ does not start with a3, then β′ = a−q
i δ′ = a−q

i · · · aj+1
2 a1a2 · · · is still in P a

and is not in the set E. In such case if δ′ contains at least four syllabuses, we may

apply induction or check Cβ̂ directly. If sδ′ < 4, then β = a−q
i aj

2a3a
2
1a

2
2. To be a

knot, we have q = 0, j = 1 or q = 1, i = 1, j = 2. In each of the two cases we have

Cβ̂ > 0 by direct calculation.

If δ starts with a3 but q = 0, then β′ = δ′ is still in P a but not in E. Also

sβ = sδ = sβ′ = sδ′ . So we may apply induction or check Cβ̂ directly.

If δ starts with a3 and q = 1, then i = 1 or 2. If i = 1, then β′ = a−1
1 a2a1a2 · · ·

is still in P a but not in E and contains at least five syllabuses. So we may use

induction. If i = 2, then β′ = a1a2 · · · is in P a and is not in E. Also sβ′ = sδ −

1. Hence if sδ > 4, we may use induction. So suppose that sδ = 4. Then β =

a−1
2 a3a

2
1a

2
2a3 or β = a−1

2 a3a
2
1a

2
2a

j
1. But the former is not a knot. The latter is a

knot when j = 2, in which case Cβ̂ > 0.

Case (D2.2.2). k = 1.

Then δ = · · · a3a
2
1a2a3 · · · or δ = · · · a3a

2
1a2a

j
1 · · · or δ = · · · a3a

2
1a2. Correspond-

ingly, we have δ′ = · · ·a2a1a3 · · · = · · · a2
2a1 · · · or δ = · · ·a2a

j+1
1 · · · or δ = · · · a2a1.

If β′ is in P a −E and sδ′ ≥ 4, we may use induction. If β′ ∈ E, then one can check

that the old braid β has positive Casson invariant. If β′ ∈ P a but sδ′ < 4, then one

can also verify that β always has positive Casson invariant, applying the conditions

that (1) β ∈ P a − E, (2) sδ ≥ 4 and (3) β̂ is a knot.

Case (D2.3). δ = a2
1a

k
2 · · · .

Then δ = a2
1a

k
2a

j
1a

m
2 · · · or δ = a2

1a
k
2a3a

j
1 · · ·. And δ′ = ak

2aj
1a

m
2 · · · or δ′ =

ak
2a3a

j
1 · · ·. So β′ is in P a unless β starts with a−1

2 . If β starts with a−1
2 , then

β′ = ak−1
2 aj

1a
m
2 · · · or β′ = ak−1

2 a3a
j
1 · · · which is in P a. Again in each of these

cases, if β′ is the set E or sδ′ < 4, one can calculate directly that the old braid β

has positive Casson invariant. Otherwise one can use the induction.

Case (D2.4). δ = · · · a2
1 .

This case can be treated similarly as in the previous case.
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So by Claims D1 and D2, we now assume that every syllabus in a3 and in a1

occurring in δ have power equal to one.

Claim D3. We may assume that every syllabus in a2 occurring in δ has power

equal to one.

Proof. This can be proved similarly as Claim D2.

So we now assume that every syllabus occurring in δ has power one.
If a1a2a1 appears immediately after an a3, then β = · · ·a3a1a2a1 · · · =

· · · a3a1a3a2 · · · = · · ·a3a2a1a2 · · · = · · · a2a
2
1a2 · · · which is still in P a. Hence we

may apply Claim D2 β is in the set {a3a1a2a1, a−1
2 a3a1a2a1, a−1

3 a2a3a1a2a1,

a−1
1 a3a1a2a1a2, a−1

1 a2a3a1a2a1a2, a−1
3 a2a3a1a2a1a2}. If β is a word in this set,

then either β̂ is not a knot or β̂ has positive Casson invariant. So we may assume
that no a3a1a2a1 occurs in β. A similar argument shows that we may assume that
no a2a1a2a3 occurs in β. Hence we may assume that β is one of the words in the
set






























a1a2a3a1, (a3a1a2)m, (a3a1a2)
ma3, (a3a1a2)

ma3a1,

a2(a3a1a2)m, a1a2(a3a1a2)m, a2(a3a1a2)ma3, a2(a3a1a2)ma3a1,

a1a2(a3a1a2)
ma3, a1a2(a3a1a2)ma3a1, a

−1

2
a1a2a3a1, a

−1

3
a1a2a3a1,

a
−1

1
(a3a1a2)m, a

−1

1
(a3a1a2)

ma3, a
−1

2
(a3a1a2)ma3, a

−1

2
(a3a1a2)ma3a1

a
−1

1
a2(a3a1a2)

m, a
−1

3
a2(a3a1a2)m, a

−1

3
a1a2(a3a1a2)m, a

−1

1
a2(a3a1a2)

ma3,

a
−1

3
a2(a3a1a2)

ma3a1 a
−1

2
a1a2(a3a1a2)

ma3, a
−1

2
a1a2(a3a1a2)ma3a1, a

−1

3
a1a2(a3a1a2)

ma3a1































where m > 0.

If β = a1a2a3a1, then it has positive Casson invariant. The case β = (a3a1a2)
m

cannot occur since its closure is not a knot for all m > 0. Similarly each of the cases

a2(a3a1a2)
ma3a1, a1a2(a3a1a2)

ma3, a−1
2 a1a2a3a1,

a−1
3 a1a2a3a1, a−1

1 (a3a1a2)
m, a−1

2 (a3a1a2)
ma3a1 and a−1

1 a2(a3a1a2)
ma3

cannot occur as β. If β = (a3a1a2)
ma3, then it is conjugate to β′ =

a2
3a1a2(a3a1a2)

m−1. So we may apply Claim D1 unless m = 1. But when m = 1,

one can calculate directly that β = a3a1a2a3 has positive Casson invariant. If

β = (a3a1a2)
ma3a1, then it is conjugate to β′ = a2a

3
1a2(a3a1a2)

m−1. So we are

back to a previous case unless m = 1. But when m = 1, β̂ is not a knot. If

β = a2(a3a1a2)
m, then it is conjugate to β′ = (a3a1a2)

m−1a3a1a
2
2. So we may

apply Claim D2 unless m = 1. But when m = 1, one can calculate directly that

β = a2a3a1a2 has positive Casson invariant. Similarly one can deal with the cases

a1a2(a3a1a2)
m, a2(a3a1a2)

ma3 and a1a2(a3a1a2)
ma3a1.

Suppose that β = a−1
1 (a3a1a2)

ma3. To be a knot, we have m ≥ 3 and m = 3

(mod 2). Also β is conjugate to β′ = a−1
1 a2(a3a1a2)

m which has less number of

syllabuses in a3 and thus we may apply the induction. Similarly one can deal with

the case when β = a−1
2 (a3a1a2)

ma3.

If β = a−1
1 a2(a3a1a2)

m, then to be a knot m must be even. Applying the formula

(∗) at the first crossing of β, we get Cβ̂ = Cβ̂1
+ lk(λ̂1) where β1 = a1a2(a3a1a2)

m
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and λ1 = a2(a3a1a2)
m. One can easily deduce from the projection of λ1 that

lk(λ̂1) = −m/2. Hence, we have Cβ̂ = Cβ̂1
− m/2. In such case it suffices to show

the following.

Claim D4. Cβ̂1
> m/2.

Proof. We knew that m = 2p with p > 0. We shall prove the claim by induc-

tion on the number p. Write β1 as β1 = a1a2a
−1
1 a2a

2
1a2a

−1
1 a2a

2
1a2(a3a1a2)

m−2.

Applying formula (∗) to β1 at the first crossing of the first syllabus a2
1, we get

Cβ̂1
= Cβ̂2

− lk(λ̂2) where β2 = a1a2a
−1
1 a2

2a
−1
1 a2a

2
1a2(a3a1a2)

m−2 and λ2 =

a1a2a
−1
1 a2a1a2a

−1
1 a2a

2
1a2(a3a1a2)

m−2. One can easily deduce from the projection

of λ2 that lk(λ̂2) = −2(m− 2)− 3 = −4p + 1. Hence, we have Cβ̂1
= Cβ̂2

+ 4p− 1.

We then apply formula (∗) to β2 at the first crossing of the first syllabus a2
2,

we get Cβ̂2
= Cβ̂3

− lk(λ̂3) where β3 = a1a2a
−2
1 a2a

2
1a2(a3a1a2)

m−2 and λ3 =

a1a2a
−1
1 a2a

−1
1 a2a

2
1a2(a3a1a2)

m−2. One can calculate to see that lk(λ̂3) = −p − 1.

Hence, we have Cβ̂2
= Cβ̂3

+p+1. We then apply formula (∗) to β3 at the first cross-

ing of the syllabus a−2
1 , we get Cβ̂3

= Cβ̂4
+lk(λ̂4) where β4 = a1a

2
2a

2
1a2(a3a1a2)

m−2

and λ4 = a1a2a
−1
1 a2a

2
1a2(a3a1a2)

m−2. Also one can calculate to see that lk(λ̂4) =

−p. Hence, we have Cβ̂3
= Cβ̂4

− p. We then apply formula (∗) to β4 at the first

crossing of the syllabus a2
2, we get Cβ̂4

= Cβ̂5
− lk(λ̂5) where β5 = a3

1a2(a3a1a2)
m−2

and λ5 = a1a2a
2
1a2(a3a1a2)

m−2. We also have lk(λ̂5) = −4(p − 1) − 2. Hence we

have Cβ̂4
= Cβ̂5

+ 4(p − 1) + 2. Applying formula (∗) to β5 at the first crossing

of the syllabus a2
1, we get Cβ̂5

= Cβ̂6
− lk(λ̂6) where β6 = a1a2(a3a1a2)

m−2 and

λ6 = a2
1a2(a3a1a2)

m−2. We also have lk(λ̂6) = −(p − 1) − 1 = −p. Hence we have

Cβ̂5
= Cβ̂6

+ p. In summary, we get

Cβ̂1
= Cβ̂6

+ 9p − 2.

Now one can easily see that the claim follows.

Similarly we can treat the rest of cases. The proof of Proposition 2 is now

complete.

4. Proof of Proposition 3

Given a 3-braid β in letters a1, a2, a3, whose closure is a knot, there is a canonical

way to construct a Seifert surface for β̂ as follows: in the projection plane we have

the braid diagram in its canonical form, place three rectangular disks in the space

so that disk 1 lies in the projection plane and is on the left hand side of the braid,

disk 3 also lies in the projection plane but on the right hand side of the braid, disk

2 lies perpendicularly above the projection plane, each disk having one side running

parallel to the braid from top to the bottom, then to each letter a1 (a−1
1 ) occurring

in β use a half negatively (positively) twisted band connecting disks 1 and 2, to

each letter a2 (a−1
2 ) use a half negatively (positively) twisted band connecting disks
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2 and 3, and to each letter a3 (a−1
3 ) use a half negatively (positively) twisted band

connecting disks 1 and 3 (behind disk 2). Figure 6 illustrates such construction for

β = a1a2a3a
−1
1 a−1

3 a−1
2 . We call the Seifert surface of β̂ so constructed canonical

Seifert surface of β̂. In [18], it was proved that if β is a 3-braid in norm form

(whose definition we recalled in Section 2), then its canonical Seifert surface has

the minimal genus (thus is an essential and Thurston norm minimizing surface in

the exterior of β̂).

disk 1

disk 2

disk 3

Fig. 6. Construction of the canonical Seifert surface.

Lemma 5. Let β be a 3-braid such that β̂ is a knot. Let S be the canonical Seifert

surface of β and suppose that it has minimal genus.

(1) If S contains two half twisted bands corresponding to the same letter a1 or a2

or a3, then the −1-surgery on β̂ is a manifold with essential lamination.

(2) If S contains two half twisted bands corresponding to the same letter a−1
1 or

a−1
2 or a−1

3 , then the 1-surgery on β̂ is a manifold with essential lamination.

Proof. We shall only prove part (1) when S contains two half twisted bands cor-

responding to the same letter a1. All other cases can be proved similarly.

Let M be the knot exterior of β̂ in S3. We shall also use M(−1) to denote the

manifold obtained by Dehn surgery on the knot β̂ with the slope −1. Let V be the

solid torus filled in M to obtain the manifold M(−1). We first construct an essential

branched surface B in the exterior M and then prove that B (which has boundary

on ∂M) can be capped off by a branched surface in V to yield an essential branched

surface B̂ in M(−1). The construction of B is similar to that given in [14].

Since S contains two half negatively twisted bands corresponding to a1, there is a

disk D in M as shown in Fig. 7(1) whose boundary lies in S∪∂M and whose interior

is disjoint from S ∪ ∂M . With more detail, the boundary of ∂D intersects S in two

disjoint arcs and intersects ∂M in two disjoint arcs with the latter happening around
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disk 1

disk 2

disk 3
D

D
a

a

1

1

M

M

S

S

S

S

S S

S

D D

S

(1) (2)

Fig. 7. Construction of B.

the places corresponding to the two bands of a1. (Similar disks were used in [3] for

a different purpose). The branched surface B is the union of the Seifert surface

S and the disk D with their intersection locus smoothed as shown in Fig. 7(2).

The arrows in the figure indicate the cusp direction of branched locus. A similar

argument as in [14] shows that the branched surface fully carries a lamination with

no compact leaves and each negative slope can be realized as the boundary slope of

a lamination fully carried by B. Since the disk D intersects the knot exactly twice,

the branched surface B is essential in M by [9, 3.12]. The branched locus of B is

a set of two disjoint arcs properly embedded in S, each being non-separating. The

branched surface B meets ∂M yielding a train track in ∂M as show in Fig. 8(1).

Let L be a lamination fully carried by B whose boundary slope is −1. Then ∂L

must look like that shown in Fig. 8(2).

Fig. 8. (1) ∂B on ∂M , (2) the curve of slope −1 fully carried by ∂B.

We now construct a branched surface BV in the sewn solid torus V such that

the train track BV ∩ ∂V is equivalent to the train track B ∩ ∂M and BV fully
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carries a lamination which is a set of meridian disks of V . Hence, B and BV match

together and form a branched surface B̂ in M(−1). Take a meridian disk D0 of V

and push part of it near and around ∂V as shown in Fig. 9(1) and then identify

two disjoint sub-disks of D0 as shown in Fig. 9(2). This gives a branched surface

B1 with the cusp direction along its singular locus (an arc) as shown in Fig. 9(2).

Then we split B1 locally at a place around a point of ∂B1 as shown in Fig. 9(3)

and then we start pinch the resulting branched surface along part of its boundary

as shown in Fig. 9(4). The pinching continues as shown in Fig. 9(5) until we get

the branch surface whose boundary is as shown in Fig. 9(6). The resulting surface

is the branched surface Bv. Obviously the train track ∂Bv on ∂V is equivalent to

the train track ∂B in ∂M and they can be matched in ∂V = ∂M .

V V V

V

(1) (2) (3)

(4)

a meridian curve of  V

V

pinch along here

V

pinch along here

branch locus

(5) (6)

branch locus

branch locus

Fig. 9. Construction of BV .

To see that B̂ is essential we have five things to check by [10, Definition 2.1]:

(i) B̂ has no discs of contact;

(ii) the horizontal surface ∂hN(B̂) is incompressible and ∂-incompressible in

M(−1)−
◦

N (B̂), there are no monogons in M(−1)−
◦

N (B̂) and no component

of ∂hN(B̂) is a 2-sphere;

(iii) M(−1)−
◦

N (B̂) is irreducible;

(iv) B̂ contains no Reeb branched surface;

(v) B̂ fully carries a lamination.
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Condition (v) follows automatically from the construction since leaves of a lamina-

tion fully carried by B with boundary slope −1 match on ∂M = ∂V with (disk)

leaves of a lamination fully carried by BV . It also follows that B̂ does not carry

any compact surface since B does not. Hence in particular condition (iv) holds also

for B̂. By the construction, one can easily see that V −
◦

N (Bv) has two compo-

nents, each of which topologically looks like as shown in Fig. 10. It follows that

M(−1)−
◦

N (B̂) is topologically the same as M−
◦

N (B), with the same horizontal

surface. From this we get conditions (ii) and (iii) for B̂.

We now show that B̂ has no disk of contact. Note that ∂v(N(B̂)) is a set of two

annuli and each of the annuli is obtained from matching a component of ∂v(N(B))

(a vertical disk) and a component of ∂v(N(BV )) (a vertical disk). Hence, if Dc were

a contact disk in N(B̂), then its boundary would have to intersect a component

of ∂v(N(B)). It follows that the interior of Dc must enter into the region of N(B)

corresponding to a branch of (S− the singular locus of B). But one can easily see

from Fig. 7 that the complement of the singular locus of B in S is a connected

surface. It follows that Dc has to intersect every I-fiber of B since Dc is transverse

to I-fibers of B. In particular ∂Dc has to intersect both of the vertical annuli of

∂v(B̂v), which gives a contradiction.

N(Bv)v

N(Bv)h

V M=

N(Bv)h

Fig. 10. A component of V −
◦

N (Bv).

We now prove Proposition 3. By [18], the canonical Seifert surface of β̂ has

minimal genus. If the condition (1) of Proposition 3 holds, then the conclusion

of Proposition 3 follows obviously from Lemma 5. Suppose that the condition (2)

of Proposition 3 holds. To show that the 1-surgery on β̂ gives a manifold with

an essential lamination, we may assume, by Lemma 5, that η contains at most

three syllabus, and they have different subscripts and all have power −1. But η

contains at least two syllabuses. Suppose that the first and the second syllabuses
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of η are a−1
3 and a−1

2 , i.e. η = a−1
3 a−1

2 · · ·. Then since β is a shortest word, the

word δ does not end with a syllabus in a3. Suppose that δ ends with a syllabus

in a1. Then we have β = · · ·a1a
−1
3 a−1

2 · · ·. By a band move isotopy of the Seifert

surface as shown in Fig. 11(1) we get an isotopic 3-braid β ′ which contains two a−1
2 .

(Algebraically, β = · · · a1a
−1
3 a−1

2 · · · = · · · a−1
2 a1a

−1
2 · · · = β′). Further the canonical

Seifert surface of β̂′ is isotopic to that of β̂ and thus has minimal genus. So we may

apply Lemma 5 to see that for the knot β̂′ = β̂, the 1-surgery gives a manifold

with essential lamination. Suppose then that δ ends with a syllabus in a2. Since δ is

assumed to contain at least two syllabuses, β = · · · a1a
k
2a−1

3 a−1
2 · · ·. Again we may

first use the band-isotopy as shown in Fig. 11(2) and then use the band isotopy of

Fig. 11(1) to get an isotopic 3-braid whose canonical Seifert surface contains two

bands corresponding to a−1
2 . Hence Proposition 3 follows from Lemma 5 in this

case as well. Similarly one can treat the cases when η starts with a−1
2 a−1

1 or with

a−1
1 a−1

3 . The case when δ contains at most three syllabuses, each having power at

most one, can be proved similarly. This proves Proposition 3 under its condition

(2). Finally if the condition (3) of Proposition 3 holds then either condition (2) of

Proposition 3 holds or one can get directly two letters ai of the same subscript in

δ and two letters a−1
j of the same subscript in η. So again the Proposition follows

from Lemma 5.

(2)

(1)

Fig. 11. The band move isotopies.
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